来自周民强书上一个纠结的极限证明题

陈洪葛 posted @ Feb 16, 2013 08:24:38 AM in 数学分析 , 994 阅读

设$f(x)\in C^{(2)}(0,1) $,且$\displaystyle \lim_{x \rightarrow 1^{-}}{f(x)}=0$.若存在$M>0$,使得$(1-x)^{2}|f''(x)|\leq M (0<x<1)$则
\[ \lim_{x\rightarrow 1^{-}}{(1-x)f'(x)}=0 \]
证明:
对 $t,x\in(0,1): t>x$,用Taylor公式
\[ f(t)=f(x)+f'(x)(t-x)+f''(\xi)\frac{(t-x)^{2}}{2}, x<\xi<t \]
并取$t=x+(1-x)\delta, (0<\delta<\frac{1}{2}) $,我们有
\[ f(t)-f(x)=\delta (1-x)f'(x)+\frac{\delta^{2}}{2}f''(\xi)(1-x)^{2} \]
\[ \Leftrightarrow (1-x)f'(x)=\frac{f(t)-f(x)}{\delta}-\frac{\delta}{2}f''(\xi)(1-x)^{2} \]
\[ |f'(x)(1-x)|\leq \frac{|f(t)-f(x)|}{\delta}+\frac{\delta}{2}|f''(\xi)|(1-x)^{2} \]
注意到\[ \xi=x+(t-x)\theta   , 0<\theta<1 \]
\[\Rightarrow (1-\xi)^{2}=(1-x)^{2}(1-\delta\theta)^{2}>\frac{1}{4}(1-x)^{2} \]
(这里是由于$ 0<\delta\theta<\frac{1}{2}$ )
及条件 $(1-x)^{2}|f''(x)|\leq M (0<x<1)$
\[ \frac{\delta}{2}|f''(\xi)|(1-x)^{2}=|f''(\xi)|(1-\xi)^{2}\cdot\frac{(1-x)^{2}}{(1-\xi)^{2}}\cdot\frac{\delta}{2}<2M\delta   \]
\[ \Rightarrow |f'(x)(1-x)|\leq \frac{|f(t)-f(x)|}{\delta}+2M\delta \]
现在,对$\forall \varepsilon $,取 $ \delta=\frac{\varepsilon}{4M} $
对上述$ \delta\varepsilon $存在$ \eta>0 $
对$ \forall 0<1-x<\eta $
有$ |f(t)-f(x)|<\frac{\delta\varepsilon}{2}$
这样,对$ \forall 0<1-x<\eta $,就有
\[ \Rightarrow |f'(x)(1-x)|<\varepsilon \]
故得 \[ \lim_{x\rightarrow 1^{-}}{(1-x)f'(x)}=0 \]

$\square$


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter