May 5

设$x_{1},x_{2},\cdots,x_{n}$是非负实数,求证:
\[ \prod_{k=1}^{n}(1+x_{k})\leq 1+\sum_{k=1}^{n}\frac{1}{k!}\left(1-\frac{k}{2n}\right)^{k-1}\left(\sum_{k=1}^{n}x_{k} \right)^{k}\]
证明:为了方便,我们记
\[ S=\sum_{k=1}^{n}x_{k}\]
由AM-GM不等式,得到
\[ \prod_{k=1}^{n}(1+x_{k})\leq \left(1+\frac{S}{n}\right)^{n}\]
这时,只要证明
\[ \left(1+\frac{S}{n}\right)^{n}\leq 1+\sum_{k=1}^{n}\frac{1}{k!}\left(1-\frac{k}{2n}\right)^{k-1}\left(\sum_{k=1}^{n}x_{k} \right)^{k}\]
注意到
\[ \left(1+\frac{S}{n}\right)^{n}=1+C_{n}^{1}\cdot\frac{S}{n}+\cdots+C_{n}^{k}\left(\frac{S}{n}\right)^{k}+\cdots+C_{n}^{n}\left(\frac{S}{n}\right)^{n}\]
兹证明
\[ C_{n}^{k}\left(\frac{S}{n}\right)^{k}\leq \frac{1}{k!}\left(1-\frac{k}{2n}\right)^{k-1}\left(\sum_{k=1}^{n}x_{k} \right)^{k}\]
稍微化简下,就是
\[ [2n-2(k-1)][2n-2(k-2)]\cdots (2n-2)\leq (2n-k)^{k-1} \]
注意到首尾项的细节,就有AM-GM
\[ [2n-2(k-1)](2n-2)\leq \left(\frac{2n-2(k-1)+2n-2}{2}\right)^{2} \]
把它们配对,马上得到不等式。
 

Feb 17

设$a,b,c\geq 0$,$a+b+c=3$,证明
\[ \frac{a}{\sqrt{b^2+b+1}}+\frac{b}{\sqrt{c^2+c+1}}+\frac{c}{\sqrt{a^2+a+1}}\geq \sqrt{3} \]
证明:
齐次化后就是
\[ \sum\frac{a}{\sqrt{a^2+13b^2+c^2+5ab+5bc+2ac}}\geq \frac{\sqrt{3}}{3} \]
由Holder
\begin{align*}
&\left(\sum\frac{a}{\sqrt{a^2+13b^2+c^2+5ab+5bc+2ac}}\right)^{2}\left(\sum a(a+c)^3(a^2+13b^2+c^2+5ab+5bc+2ac) \right)\\
&\geq \left(\sum{a^2}+\sum{ab}\right)^3
\end{align*}
所以只要证明
\[ 3\left(\sum{a^2}+\sum{ab}\right)^3\geq \left(\sum a(a+c)^3(a^2+13b^2+c^2+5ab+5bc+2ac) \right) \]
就是
\[ 2\sum{a^6}+3\sum{a^5b}+4\sum{ab^5}+2\sum{a^2b^3c}+2\sum{a^4bc}-14\sum{ab^3c^2}+11\sum{a^3b^3}+8\sum{a^2b^4}-54a^2b^2c^2\geq 0\]
这个成立,由于
\[ 2\sum{a^2b^3c}+2\sum{a^4bc}\geq 4\sum{a^3b^2c} \]
由AM-GM
\[ \frac{72}{126}a^5b+\frac{36}{126}b^5c+\frac{18}{126}c^5a\geq a^3b^2c\]
得到
\[ \sum{a^5}b\geq \sum{a^3b^2c}\]
同时
\[ \frac{4}{6}a^4b^2+\frac{1}{6}b^4c^2+\frac{1}{6}c^4a^2\geq a^3b^2c \]
得到
\[ \sum{a^4b^2}\geq \sum{a^3b^2c}\]
显然又有
\[ \sum{a^3b^3}\geq \sum{a^3b^2c} \]
这样
\[2\sum{a^6}+3\sum{a^5b}+4\sum{ab^5}+2\sum{a^2b^3c}+2\sum{a^4bc}+11\sum{a^3b^3}+8\sum{a^2b^4}\geq 32\sum{a^3b^2c}\]
Done!

________________________________________________________________________________

西神后来指出:注意到局部(切线法)

\[ \frac{1}{\sqrt{x^2+x+1}}\geq \frac{\sqrt{3}}{2}-\frac{x}{2\sqrt{3}}\]

就有

\[ LHS\geq \frac{\sqrt{3}}{2}(a+b+c)-\frac{ab+bc+ca}{2\sqrt{3}} \]

 

Feb 17

Let $a,b,c>0$,with $a+b+c=3$,Prove that
\[ \frac{1}{(a+b)(4-ab)}+\frac{1}{(b+c)(4-bc)}+\frac{1}{(c+a)(4-ca)}\geq \frac{1}{2} \]
证明:由Cauchy-Schwarz
$$ \sum_{cyc}\frac{1}{(a+b)(4-ab)}=\sum_{cyc}\frac{(3c+2a+2b)^2}{(3c+2a+2b)^2(a+b)(4-ab)}\geq\frac{49(a+b+c)^2}{\sum\limits_{cyc}(3c+2a+2b)^2(a+b)(4-ab)} $$
所以,只要证明
$$ 98(a+b+c)^5\geq3\sum\limits_{cyc}(3c+2a+2b)^2(a+b)(4(a+b+c)^2-9ab) $$
就是
\[ 2\sum{a^5}+10\sum{a^4(b+c)}+20\sum{a^3(b^2+c^2)}\geq 30abc\sum{ab}+32abc\sum{a^2}\]
由Murihead 显然。

Nov 19

设$x,y,z>0$,且满足$\displaystyle \sum_{cyc}\frac{1}{1+x}=1$.我们有
\[ \sum_{cyc}\frac{x}{\sqrt{yz}(x+1)}\geq 1 \]
证明:设$$a=\frac{1}{1+x},b=\frac{1}{1+y},c=\frac{1}{1+z}$$
\[ \Rightarrow x=\frac{b+c}{a},y=\frac{c+a}{b},z=\frac{a+b}{c} \]
齐次化后
\[ \Leftrightarrow \sum(b+c)\sqrt{bc(b+c)}\geq (a+b+c)\sqrt{(a+b)(b+c)(c+a)}\]
两边平方,化简成
\[ \sum{bc(b+c)^3}+2\sum c(c+b)(c+a)\sqrt{ab(a+c)(b+c)}\geq (a+b+c)^2(a+b)(b+c)(c+a) \]
Or
\[ \sum c(c+b)(c+a)\sqrt{ab(a+c)(b+c)}\geq abc\left(3\sum{a^2}+5\sum{ab}\right)\]
Or
\[ \sum (c+b)(c+a)\sqrt{\frac{(a+c)(b+c)}{ab}} \geq \left(3\sum{a^2}+5\sum{ab}\right)\]
Cauchy-Schwarz
\[ \sqrt{(a+c)(b+c)}\geq c+\sqrt{ab}\Rightarrow \sqrt{\frac{(a+c)(b+c)}{ab}}\geq 1+\frac{c}{\sqrt{ab}}\]
所以只要证明
\[ \sum (c+b)(c+a)\left(1+\frac{c}{\sqrt{ab}}\right)\geq \left(3\sum{a^2}+5\sum{ab}\right)\]
\[ \Leftrightarrow \sum (c+b)(c+a)\cdot \frac{c}{\sqrt{ab}}\geq 2\sum{a^2}+2\sum{ab}\]
用$a^2,b^2,c^2$替换$a,b,c$得到
\[ \sum{a^7}+\sum{a^5(b^2+c^2)}+\sum{a^3b^2c^2}\geq 2\sum{a^5bc}+2abc\cdot\sum{a^2b^2}\]
注意到
\[ \sum{a^5(b^2+c^2)}-2\sum{a^5bc}=\sum{a^5(b-c)^2}\geq 0 \]
\[\sum{a^7}+\sum{a^3b^2c^2}\geq 2\sum{a^5bc}\geq 2abc\sum{a^2b^2}\]
故不等式得证。
\[ \sqrt{2}\geq P=\sum_{cyc}\frac{(b+c)\sqrt{bc(b+c)}}{\sqrt{(a+b)(b+c)(c+a)}(a+b+c)}\geq 1  \]

另外我们有
\[ \sum_{cyc}\frac{x}{\sqrt{yz}(x+1)}\leq \sqrt{2} \]
作替换
\[ x=\frac{ab+ac}{bc},y=\frac{bc+ba}{ac},z=\frac{ca+cb}{ab}\]
于是,不等式变成
\[ \frac{a^2(b+c)}{\sqrt{(a+b)(a+c)}}+\frac{b^2(c+a)}{\sqrt{(b+c)(b+a)}}+\frac{c^2(a+b)}{(c+a)(c+b)}\leq \sqrt{2}(ab+bc+ca) \]
Or
\[ \sum_{cyc} a^2(b+c)\sqrt{b+c}\leq \sqrt{2(a+b)(b+c)(c+a)}\cdot(ab+bc+ca)\]
注意到Cauchy-Schwarz
\begin{align*}
\sum_{cyc} a^2(b+c)\sqrt{b+c}=\sum_{cyc}\sqrt{a^4(b+c)^3}&\leq \sqrt{[a(b+c)+b(c+a)+c(a+b)][a^3(b+c)^2+b^3(c+a)^2+c^3(a+b)^2]}\\
&=\sqrt{2(ab+bc+ca)[a^3(b+c)^2+b^3(c+a)^2+c^3(a+b)^2]}
\end{align*}
故只要证明
\[ (a+b)(b+c)(c+a)(ab+bc+ca)\geq a^3(b+c)^2+b^3(c+a)^2+c^3(a+b)^2\]
展开显然。

Oct 11

设$a,b,c>0$,有
\[ \sqrt{\frac{a^3}{a^2+ab+b^2}}+\sqrt{\frac{b^3}{b^2+bc+c^2}}+\sqrt{\frac{c^3}{c^2+ca+a^2}}\geq \frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{3}} \]
证明:作替换$x^2=a,y^2=b,z^2=c$,不等式变成
\[ \sum_{cyc}\frac{x^6}{x^4+x^2y^2+y^4}+2\sum_{cyc}\frac{x^3y^3}{\sqrt{(x^4+x^2y^2+y^4)(y^4+y^2z^2+z^4)}}\geq \frac{x^2+y^2+z^2+2xy+2yz+2xz}{3} \]
注意到
\[ \sum_{cyc}\frac{x^6}{x^4+x^2y^2+y^4}=\sum_{cyc}\frac{y^6}{x^4+x^2y^2+y^4}\]
因此,不等式变成
\[ \frac{1}{2}\sum_{cyc}\frac{x^6+y^6}{x^4+x^2y^2+y^4}+2\sum_{cyc}\frac{x^3y^3}{\sqrt{(x^4+x^2y^2+y^4)(y^4+y^2z^2+z^4)}}\geq \frac{x^2+y^2+z^2+2xy+2yz+2xz}{3} \]
\[ \Leftrightarrow 6\sum_{cyc}\frac{x^3y^3}{\sqrt{(x^4+x^2y^2+y^4)(y^4+y^2z^2+z^4)}}\geq \frac{1}{2}\sum_{cyc}\left(x^2+y^2+4xy-\frac{3(x^6+y^6)}{x^4+x^2y^2+y^4}\right)\]

\[ \frac{1}{2}\sum_{cyc}\left(x^2+y^2+4xy-\frac{3(x^6+y^6)}{x^4+x^2y^2+y^4}\right)=\sum_{cyc}\frac{6x^3y^3-(x-y)^4(x+y)^2}{x^4+x^2y^2+y^4}\]

\[ \Leftrightarrow 6\sum_{cyc}\frac{x^3y^3}{\sqrt{(x^4+x^2y^2+y^4)(y^4+y^2z^2+z^4)}}\geq\sum_{cyc}\frac{6x^3y^3-(x-y)^4(x+y)^2}{x^4+x^2y^2+y^4}\]
注意到两组顺序
\[ \frac{x^3y^3}{\sqrt{x^4+x^2y^2+y^4}},\frac{y^3z^3}{\sqrt{y^4+y^2z^2+z^4}},\frac{z^3x^3}{\sqrt{z^4+z^2x^2+x^4}}\]
\[ \frac{1}{\sqrt{x^4+x^2y^2+y^4}},\frac{1}{\sqrt{y^4+y^2z^2+z^4}},\frac{1}{\sqrt{z^4+z^2x^2+x^4}}\]
由排序不等式有
\[  \Leftrightarrow \sum_{cyc}\frac{x^3y^3}{\sqrt{(x^4+x^2y^2+y^4)(y^4+y^2z^2+z^4)}}\geq \sum_{cyc}\frac{x^3y^3}{x^4+x^2y^2+y^4}\]
Hence we are done!