来自群里的一个根式不等式
Let $a,b,c\geq 0$ with $ a+b+c=3$ ,show that
\[ \sqrt{a^2+bc+2}+\sqrt{b^2+ca+2}+\sqrt{c^2+ab+2}\geq 6 \]
(lhclp008)
Proof
by Holder inequality
\[ \left(\sum{\sqrt{a^2+bc+2}}\right)^2\left[\sum{\frac{(a^2+2bc+9)^3}{a^2+bc+2}}\right]\geq [(a+b+c)^2+27]^3=36^3 \]
Therefore,it's suffice to check
\[ \frac{(a^2+2bc+9)^3}{a^2+bc+2}+\frac{(b^2+2ca+9)^3}{b^2+ca+2}+\frac{(c^2+2ab+9)^3}{c^2+ab+2}\leq 1296 \]
Which can be checked by Muirhead's theorem.
_____________________________________________________________________________________________________________
also,we have
\[ \sqrt{3a^2+4bc+9}+\sqrt{3b^2+4ca+9}+\sqrt{3c^2+4ab+9}\geq 12. \]
in the same conditions.
(quyhktn-qa1)
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&t=538752
it's suffices to prove
$$ \frac{(a^2+2bc+9)^3}{3a^2+4bc+9}+\frac{(b^2+2ca+9)^3}{3b^2+4ca+9}+\frac{(c^2+2ab+9)^3}{3c^2+4ab+9}\le 324 $$
Which can also be checked by Muirhead's theorem.