一个矩阵不等式

陈洪葛 posted @ May 02, 2014 05:40:38 PM in 高等代数 , 739 阅读

问题设$A,B\in M_{n}(C)$,求证:
\[ ||AB-BA||_{F}\leq \sqrt{2}||A||_{F}||B||_{F}  \]
证明:设
\[ A=\text{diag}(a_{1},a_{2},\cdots,a_{n})\qquad B=(b_{ij}) \]
\[ AB-BA=\text{diag}(a_{1},a_{2},\cdots,a_{n})B-B\text{diag}(a_{1},a_{2},\cdots,a_{n})=((a_{i}-a_{j})b_{ij})\]

\begin{align*}
 ||AB-BA||_{F}^{2}&=\sum_{i,j}|a_{i}-a_{j}||b_{ij}|^{2}\\
 &\leq \sum_{i,j}2\left(|a_{1}|^2+|a_{2}|^2+\cdots+|a_{n}|^{2}\right)|b_{ij}|^{2}\\
 &=2 ||A||_{F}^{2}||B||_{F}^{2}
\end{align*}
一般地,用A的奇异值SVD分解为
\[ A=U\text{diag}(a_{1},a_{2},\cdots,a_{n})V \]
其中$U,V$为酉矩阵,则变成上面的情形。


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter