设$a,b,c>0$ 证明
\[ \frac{1}{(3a+2b+c)^2}+\frac{1}{(3b+2c+a)^2}+\frac{1}{(3c+2a+b)^2}\leq \frac{1}{4(ab+bc+ca)} \]
证明:
1、$ c\geq b\geq a$
由 AM-GM
\[ \frac{1}{(3a+2b+c)^2}=\frac{1}{[(a+2b)+(c+2a)]^2}\leq \frac{1}{4(a+2b)(c+2a)} \]
\[ \Leftrightarrow \frac{1}{(a+2b)(c+2a)}+\frac{1}{(b+2c)(a+2b)}+\frac{1}{(c+2a)(b+2c)}\leq \frac{1}{ab+bc+ca} \]
\[ \Leftrightarrow (a+2b)(b+2c)(c+2a)\geq 3(a+b+c)(ab+bc+ca) \]
\[ \Leftrightarrow ab^2+bc^2+ca^2\geq a^2b+b^2c+c^2a \]
\[ \Leftrightarrow (a-b)(b-c)(c-a)\geq 0 \]
上式成立,由于$c\geq b\geq a$
2、$a\geq b\geq c$
由AM-GM
\[ \frac{1}{[(a+b+c)+(2a+b)]^2}\leq \frac{1}{4(a+b+c)(2a+b)} \]
\[\Leftrightarrow \frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\leq \frac{a+b+c}{ab+bc+ca}\]
\[ \Leftrightarrow (2a+b)(2b+c)(2c+a)(a+b+c)\geq (ab+bc+ca)[2(a^2+b^2+c^2)+7(ab+bc+ca)]\]
由于$a\geq b\geq c$,所以
\[ (2a+b)(2b+c)(2c+a)\geq 3(a+b+c)(ab+bc+ca) \]
故只要证明
\[ 3(a+b+c)^2\geq 2(a^2+b^2+c^2)+7(ab+bc+ca) \]
显然成立。
证法2(西西)
\begin{align*}
(a+2b+3c)^2&=[(a+c)+2(b+c)]^2\\
&=(a+c)^2+4(b+c)^2+4(a+c)(b+c)\\
&\geq 3(b+c)^2+6(a+c)(b+c)\\
&=3(b+c)(2a+b+3c)
\end{align*}
等价证明
\[ \sum_{cyc}{\frac{1}{(b+c)(2a+b+3c)}}\leq \frac{3}{4(ab+bc+ca)}\]
就是
\[ \sum_{cyc}{\left(\frac{1}{2}-\frac{ab+bc+ca}{(b+c)(2a+b+3c)}\right)}\geq \frac{3}{4}\]
\[ \Leftrightarrow\sum_{cyc}{\frac{b+c}{2a+b+3c}}+2\sum_{cyc}{\frac{c^2}{(b+c)(2a+b+3c)}}\geq \frac{3}{2} \]
由Cauchy-Schwarz
\[ \sum_{cyc}{\frac{b+c}{2a+b+3c}}\geq \frac{4(a+b+c)^2}{\sum{(b+c)(2a+b+3c}}=1 \]
\[ 2\sum_{cyc}{\frac{c^2}{(b+c)(2a+b+3c)}}\geq \frac{2(a+b+c)^2}{\sum{(b+c)(2a+b+3c)}}=\frac{1}{2} \]
Done!
证法3(天书)
用替换
\[ \left\{
\begin{array}{ll}
x=3a+2b+c, & \\
y=2b+2c+a, & \\
z=3c+2a+b, &
\end{array}\right.\]
得到\[ \left\{
\begin{array}{ll}
a=\dfrac{7x-5y+z}{18}, & \\
b=\dfrac{x+7y-5z}{18}, & \\
c=\dfrac{y+7z-5x}{18}, &
\end{array}\right.\]
不等式等价于
\[ \Leftrightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\leq \frac{27}{14(xy+yz+xz)-11(x^2+y^2+z^2)} \]
\[ \Leftrightarrow 14\sum{xy}\cdot\sum{x^2y^2}\leq 27x^2y^2z^2+11\sum{x^2}\sum{x^2y^2} \]
\[ \Leftrightarrow 14\sum{x^3y^3}+14xyz\sum{x^2(y+z)}\leq 60x^2y^2z^2+11\sum{x^4(y^2+z^2)} \]
\[ \Leftrightarrow \sum{\left(7x^2y^2+2z^2(2x^2-3xy+2y^2)\right)(x-y)^2}\geq 0 \]
Done