群里的一个不等式
陈洪葛
posted @ Feb 13, 2013 11:59:03 AM
in 不等式
, 892 阅读
Let $x,y,z$ be postive real numbers,with $ (x-2)(y-2)(z-2)\geq xyz-2 $.show that
\[ \frac{x}{\sqrt{x^5+y^3+z}}+\frac{y}{\sqrt{y^5+z^3+x}}+\frac{z}{\sqrt{z^5+x^3+y}}\leq \frac{3}{\sqrt{x+y+z}} \]
Proof:
by Holder inequality
\[ (x^5+y^3+z)\left(\frac{1}{x}+1+z\right)^{2}\geq (x+y+z)^{3} \]
Hence
\[ \sum_{cyc}{\frac{x}{\sqrt{x^5+y^3+z}}}\leq \sum_{cyc}{\frac{1+x+xz}{(x+y+z)\sqrt{x+y+z}}}=\frac{3+x+y+z+xy+yz+xz}{(x+y+z)\sqrt{x+y+z}} \]
it's suffice to check
\[ \frac{3+x+y+z+xy+yz+xz}{(x+y+z)\sqrt{x+y+z}}\leq \frac{3}{\sqrt{x+y+z}} \]
Or
\[ 2(x+y+z)\geq 3+xy+yz+xz \]
Which is obvious from the condition.
Done!
$ \square$