利用重积分证积分不等式
陈洪葛
posted @ Mar 03, 2013 09:14:42 PM
in 数学分析
, 988 阅读
设$f(x)$是正的递减的函数,证明
\[ \int_{0}^{1}{xf(x)^2dx} \int_{0}^{1}{f(x)dx}\le \int_{0}^{1}{f(x)^2dx }\int_{0}^{1}{xf(x)dx} \]
证明 考虑
\[ G(x,y)= \frac{1}{2}(x-y)(f(x)-f(y))f(x)f(y)\]
显然有
\[ G(x,y)\leq 0 \]
\[ \iint_{[0,1]^{2}}{G(x,y)dxdy}=\int_{0}^{1}{xf^{2}(x)dx}\cdot \int_{0}^{1}{f(x)dx}-\int_{0}^{1}{xf(x)dx}\cdot\int_{0}^{1}{f^{2}(x)dx}\]
打开即得证