改进了但却简单不少的不等式

陈洪葛 posted @ Mar 12, 2013 09:14:36 AM in 不等式 , 980 阅读

Let$a,b,c>0$ with $a + b+c=3$, Prove that $a\sqrt[3]{a+b}+b\sqrt[3]{b+c}+c\sqrt[3]{c+a} \ge 3 \sqrt[3]2$

(Tran Quoc Anh)

Proof:

by AM-GM inequality,we have
$$ a\sqrt[3]{a+b}=\frac{3\sqrt[3]{2}a(a+b)}{3\sqrt[3]{2(a+b)(a+b)}}\geq 3\sqrt[3]{2}\cdot \frac{a(a+b)}{2+2a+2b} $$
Thus,it's suffice to prove that
$$ \frac{a(a+b)}{a+b+1}+\frac{b(b+c)}{b+c+1}+\frac{c(c+a)}{c+a+1}\geq 2 $$
Or
$$ \frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\leq 1 $$
After homogenous,it's
$$\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\leq \frac{1}{3} $$
Now,multiply $4a+4b+4c$ to each sides.we can rewrite the inequality into
$$ \frac{9ca}{4a+4b+c}+\frac{9ab}{4b+4c+a}+\frac{9bc}{4c+4a+b}\leq a+b+c $$
Using Cauchy-Schwarz inequality,we have
$$ \frac{9}{4a+4b+c}=\frac{(2+1)^2}{2(2a+b)+(2b+c)}\le \frac{2}{2a+b}+\frac{1}{2b+c} $$
Therefore
\begin{align}
  \sum{\frac{9ca}{4a+4b+c}}&\leq \sum{\left(\frac{2ca}{2a+b}+\frac{ca}{2b+c}\right)}\\
&=a+b+c
\end{align}
Hence we are done!

未改进的结果

http://kkkkuingggg.5d6d.net/thread-1119-1-3.html
 


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter