中值定理一题
陈洪葛
posted @ Aug 31, 2013 10:44:23 PM
in 数学分析
, 994 阅读
设$f(x)$在$[0,2]$内连续,且在$(0,2)$内可导,且$f(1)=0$,求证:$\exists \xi\in(0,2)$,使得
\[ f'(\xi)=\frac{\pi(\xi-\tan \xi)}{2\xi^2\sec \xi-\pi\xi\tan \xi}f(\xi) \]
(西西)
证明 构造
\[ F(x)=\left(2-\pi\cdot\frac{\sin{x}}{x}\right)f(x) \]
由于$F\left(\frac{\pi}{2}\right)=F(1)=0 $
由Rolle定理知$\exists \xi\in(0,2)$使得
\[ F'(\xi)=0 \]
\[ F'(x)=\pi\left(\frac{\sin{x}-x\cos{x}}{x^2}\right)f(x)+f'(x)\left(\frac{2x-\pi\sin{x}}{x}\right)\]
\[ \pi\left(\frac{\sin{\xi}-\xi\cos{\xi}}{\xi^2}\right)f(\xi)+f'(\xi)\left(\frac{2\xi-\pi\sin{\xi}}{\xi}\right)=0\]
\[ \Rightarrow f'(x)=\frac{\pi(\xi-\tan \xi)}{2\xi^2\sec \xi-\pi\xi\tan \xi}f(\xi) \]