利用积分放缩证明的一个不等式
陈洪葛
posted @ 11 年前
in 数学分析
, 1259 阅读
Let k,n∈N,n≥k, prove that
(k+1)k+1kkn∑t=k+11t2<e
证明:
∞∑r=m+11r2=∫10xmlnxx−1dx
(1+1k)k+1n∑t=k+1kt2<(1+1k)k+1∞∑t=k+1kt2=(1+1k)k+1∫10kxklnxx−1dx<(1+1k)k+1∫10kxk−12dx=(1+1k)k+1(2k2k+1)=(1+1k)k2k+22k+1<e