Jun 4

计算

\[\int_0^1 \int_0^1 \frac{\ln(2-xy)}{1-xy}dx \ dy \]

(tian_275461)

\begin{align*}
\int_0^1 \int_0^1 \frac{\ln(2-xy)}{1-xy}dx \ dy &= \int_0^1 \int_0^1 \frac{\ln \left(1+(1-xy) \right)}{1-xy}dx \ dy
\\  &= \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n}\int_0^1 \int_0^1 (1-xy)^{n-1}dx \ dy \\ &=\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n^2}\int_0^1 \left(\frac{1-(1-y)^n}{y} \right)dy \\  &=\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n^2}H_n\\
&=\frac{(-1)^{n}}{n}\int_{0}^{1}{(1-x)^{n-1}\ln{x}dx}\\
&=-\int_{0}^{1}{\sum_{n=1}^{\infty}{\frac{(x-1)^{n-1}}{n}\ln{x}}dx}\\
&=\int_{0}^{1}{\frac{\Li_{1}(x-1)\ln{x}}{1-x}dx}\\
&=-\int_{0}^{1}{\frac{\ln{(1+t)}\ln{(1-t)}}{t}dt}
\end{align*}
为了计算上面的式子,我们先算
\[ \int_{0}^{1}{\frac{\ln^{2}{(1+x)}}{x}dx} \]
为此考虑一般的\begin{align*}
I(t) &= \int_0^t \frac{\ln^2(1+x)}{x}dx \\
&= \ln t\ln^2(1+t)-2\int_0^t \frac{\ln(x)\ln(1+x)}{1+x}dx \\
&= \ln^2{t}\ln(1+t)-2\int_1^{1+t}\frac{\ln(y) }{y} \left( \ln y+\ln \left( 1-\frac{1}{y}\right)\right)dy \quad (y=x+1)\\
&= \ln t\ln^2(1+t)-\frac{2}{3}\ln^3(1+t)-2\int_{1}^{1+t}{\frac{\ln{y}}{y}\ln{\left(1-\frac{1}{y}\right)}dy} \quad (z=\frac{1}{y})\\
&=\ln t\ln^2(1+t)-\frac{2}{3}\ln^3(1+t)+2\int_{\frac{1}{1+x}}^{1}{\frac{\ln{z}\ln{(1-z)}}{z}dz}\\
&=\ln{t}\ln^2(1+t)-\frac{2}{3}\ln^3(1+t)-2\int_{\frac{1}{1+x}}^{1}{\ln{z}d \Li_{2}(z)}\\
&=\ln{t}\ln^2(1+t)-\frac{2}{3}\ln^3(1+t)-2\left(\ln{z}\Li_{2}(z)\bigg|_{\frac{1}{1+x}}^{1}-\int_{\frac{1}{1+x}}^{1}{\frac{\Li_{2}(z)}{z}dz}\right)\\
&=\ln{t}\ln^2(1+t)-\frac{2}{3}\ln^3(1+t)-2\ln{(1+t)}\Li_{2}\left(\frac{1}{1+t}\right)-2\Li_{3}\left( \frac{1}{1+t} \right)+2\Li_{3}(1)
 \end{align*}

\[ I(1)=-\frac{2}{3}\ln^3{2}-2\ln{2}\Li_{2}\left(\frac{1}{2}\right)-2\Li_{3}\left(\frac{1}{2}\right)+2\Li_{3}(1)\]

\[ \Li_{2}\left(\frac{1}{2}\right)=\frac{1}{12}(\pi^{2}-6\ln^2{2}) \]
\[ \Li_{3}\left(\frac{1}{2}\right)=\frac{1}{24}[4\ln^3{2}-2\pi^{2}\ln{2}+21\zeta(3)] \]
\[ I(1)=\frac{\zeta(3)}{4} \]
对已知结论
\[ \int_{0}^{1}{\frac{\ln^2{(1-x)}}{x}dx}=2\zeta(3) \]
作$x=t^{2}$
\[ \Rightarrow \int_{0}^{1}{\frac{\ln^2{(1-t^2)}}{t}dx}=\zeta(3) \]
\[ \Leftrightarrow \int_{0}^{1}{\frac{\ln^2{(1-t)}}{t}dx}+\int_{0}^{1}{\frac{\ln^2{(1+t)}}{t}dx}+2\int_{0}^{1}{\frac{\ln{(1-t)}\ln{(1+t)}}{t}dx}=\zeta(3) \]
\[ \Rightarrow \int_{0}^{1}{\frac{\ln{(1-t)}\ln{(1+t)}}{t}dx}=-\frac{5}{8}\zeta(3) \]
故有
\[ \int_0^1 \int_0^1 \frac{\ln(2-xy)}{1-xy}dx \ dy=\frac{5}{8}\zeta(3) \]

__________________________________________________________________________________________________

根据上面的办法,我们可以得到

\[ \int_{0}^{1}{\frac{\ln^{2}(1-t)}{t}dt}=2\zeta(3) \]

\[ \int_{0}^{1}{\frac{\ln^{2}(1+t)}{t}dt}=\frac{1}{4}\zeta(3) \]

\[ \sum_{n=1}^{\infty}{\frac{H_{n}}{n^2}}=2\zeta(3) \]

\[ \int_{0}^{1}\int_{0}^{1}\frac{\ln(1-xy)}{1-xy}dxdy =-\zeta(3) \]

\[ \sum_{n=1}^{\infty}{\frac{H_{n}}{n^3}}=\frac{\pi^4}{72} \]
 

May 21

记得这个问题曾经在大约1年前和网友讨论过,那时候真心不会。前几天在AMM上找到了一样的。

May 16

设$f(x)$是$[0,1]\rightarrow R$上的连续函数,且记$\displaystyle F(x)=\int_{0}^{x}{f(t)dt}$,并有
\[ \int_{0}^{1}{x^2f(x)dx}=-2\int_{\frac{1}{2}}^{1}{F(t)dt} \]
求证
\[\int_{0}^{1}{f^2(x)dx}\geq 80\left( \int_{0}^{1}{f(x)dx}\right)^2\]
(tian_275461)

 首先由条件,我们看到
 \[  \int_{0}^{1}{x^2F'(x)dx}=x^2F(x)\bigg|_{0}^{1}-2\int_{0}^{1}{xF(x)dx}=F(1)-2\int_{0}^{1}{xF(x)dx}\]
 \[ \Rightarrow\qquad F(1)=2\int_{0}^{1}{xF(x)dx}-2\int_{\frac{1}{2}}^{1}{F(t)dt}=2\left(\int_{0}^{\frac{1}{2}}{xF(x)dx}+\int_{\frac{1}{2}}^{1}{(x-1)F(x)dx}  \right)\]
 而要证的不等式等价于
 \[ \int_{0}^{1}{(F'(x))^{2}dx}\geq 24(F(1))^2=80\left[2\left(\int_{0}^{\frac{1}{2}}{xF(x)dx}+\int_{\frac{1}{2}}^{1}{(x-1)F(x)dx}  \right)\right]^{2} \]
 注意到由Cauchy-Schwarz不等式,我们有
 \begin{align*}
 \int_{0}^{\frac{1}{2}}{x^4} \int_{0}^{\frac{1}{2}}{(F'(x))^{2}dx}&\geq \left(\int_{0}^{\frac{1}{2}}{x^2F'(x)dx}\right)^{2}\\
 &=\left[\frac{1}{4}F\left(\frac{1}{2}\right)-2\int_{0}^{\frac{1}{2}}{xF(x)dx}\right]^{2}\\
 &=A^2
 \end{align*}
 \begin{align*}
 \int_{\frac{1}{2}}^{1}{(x-1)^4}\int_{\frac{1}{2}}^{1}{(F'(x))^{2}dx}&\geq  \left(\int_{\frac{1}{2}}^{1}{(x-1)^2F'(x)dx}\right)^{2}\\
 &= \left[-\frac{1}{4}F\left(\frac{1}{2}\right)-2\int_{\frac{1}{2}}^{1}{(x-1)F(x)dx}\right]^{2}\\
 &=B^2
 \end{align*}
 而由Cauchy-Schwarz不等式,我们有
 \[A^2+B^2\geq \frac{1}{2} (A+B)^2=\frac{1}{2} F^{2}(1) \]
 而
 \[ \int_{0}^{\frac{1}{2}}{x^4dx}=\int_{\frac{1}{2}}^{1}{(1-x)^4dx}=\frac{1}{160}\]
 故
 \[ \int_{0}^{1}{f^2(x)dx}\geq 80\left( \int_{0}^{1}{f(x)dx}\right)^2\]
 

May 16

对$\forall m\neq 0$,若一个连续函数$f:\mathbb{R}\rightarrow\mathbb{R}$满足函数方程
\[ f\left(2x-\frac{f(x)}{m}\right)=mx\]
则有$f(x)=m(x-c)$.
证明:
我们设$g(x)=2x-\frac{f(x)}{m}$,显然$g(x)$是连续函数且有
\[ g(g(x))=2g(x)-x \qquad \forall x\in\mathbb{R}\]
若$g(x_1)=g(x_2)$则有$g(g(x_{1}))=g(g(x_{2}))$,我们得到
\[ x_{1}=x_{2}\]
故$g(x)$是一个单射,而我们知道,若$g(x)$是一个连续的单射,则$g(x)$严格单调。(关于这一点可以用反证法证明),因此,$g(x)$有2种情况,严格递增或者严格递减。下证明$g(x)$只能严格递增。
(反证)设$g(x)$严格递减,则对于$x_{1}<x_{2}$,我们有$g(x_{1})>g(x_{2})$,接着又有$g(g(x_{1}))<g(g(x_{2}))$.而这等价于
\[ 2g(x_{1})-x_{1}<2g(x_{2})-x_{2}\]
\[ \Leftrightarrow 2[g(x_{1})-g(x_{2})]<x_{1}-x_{2}\]
上面不可能成立,因为左边大于0而右边小于0。故$g(x)$只能严格递增。
改写$g(g(x))=2g(x)-x$为
\[ g(g(x))-g(x)=g(x)-x \]
递推后得到
\[ g^{n}(x)=ng(x)-(n-1)x  \qquad (n\geq 1) \]
这里$g^(n)(x)$表示$n$次符合。
则有
\[ g^{n}(x)-g^{n}(0)=n[g(x)-x-g(0)]+x \]
\[ \Leftrightarrow \frac{ g^{n}(x)-g^{n}(0)}{n}=g(x)-x-g(0)+\frac{x}{n}\]
而$g(x)$严格递增,$g^{n}(x)$也严格递增,故对上式令$n\rightarrow\infty$,由$g(x)$的单调性,我们得到

$$g(x)\leq x+g(0),\qquad x<0$$
$$g(x)\geq x+g(0),\qquad x>0$$

这样,我们得到$g(x)$的值域也是$\mathbb{R}$,故$g(x)$是一个一一映射。且$g^{-1}$存在。现在,用$x=g^{-1}(g^{-1}(y))$带入原来的方程,则有
\[ g^{-1}(g^{-1}(y))=2g^{-1}(y)-y\]
$g^{-1}(y)$同样满足这个方程,则用相同的手段,我们得到

$$g^{-1}(y)\leq y+g(0),\qquad y<0$$
$$g^{-1}(y)\geq y+g(0),\qquad y>0$$

现在,用$x=g^{-1}(y)$带入
\[ g(g(x))-g(x)=g(x)-x \]
得到
\[ g(y)-y=y-g^{-1}(y)\]
令$y=0$得到$g^{-1}(0)=-g(0)$
假设$g(0)\geq 0$,则对$x>0$有$g(x)\geq x+g(0)>0$,则对$y=g(x)>0$有$x>g(x)+g^{-1}(0)=g(x)-g(0)$.故得到
\[ g(x)=x+g(0) \qquad (x>0) \]
同理可得
\[ g(x)=x+g(0) \qquad (x<0) \]
这样我们得到$f(x)=m(x-g(0))$对$x\in \mathbb{R}$成立。

May 9

问题:设$f(x)$是$[0,1]$上的单调递增正连续函数。令$\displaystyle s=\frac{\int_{0}^{1}{xf(x)dx}}{\int_{0}^{1}{f(x)dx}}$.求证:
\[ \int_{0}^{s}{f(x)dx}\leq \int_{s}^{1}{f(x)dx}\leq \frac{s}{1-s}\int_{0}^{s}{f(x)dx}\]

(假装阳光的蜡烛网友)
证明:我们会用到一个引理

引理(Jensen积分不等式)

设$f\in \mathbb{R}[0,1]$,且$m\leq f(x)\leq M$,$x\in[0,1]$, 又有连续函数$\varphi(x)$在$[n,M]$上是(下)凸的,则
\[ \varphi\left( \int_{0}^{1}{f(x)dx}\right)\leq \int_{0}^{1}{\varphi[f(x)]dx}\]

这个定理具体可以参见相关资料,这里不再证明。
回到原问题,我们设
\[ F(x)=\int_{0}^{x}{f(t)dt} \]
由条件我们知道$F(x)$严格单调递增,并且是凸函数。观察下$\displaystyle s=\frac{\int_{0}^{1}{xf(x)dx}}{\int_{0}^{1}{f(x)dx}}$,不失一般性,我们可以设
\[ F(1)=\int_{0}^{1}{f(t)dt}=1 \]
这样
\[ s=F(1)-\int_{0}^{1}{F(x)dx}=1-\int_{0}^{1}{F(x)dx},\qquad 0\leq F(x)\leq 1,\frac{1}{2}\leq s\leq 1 \]
而原不等式变成
\[ F(s)\leq 1-F(s)\leq \frac{s}{1-s}F(s) \]
先证左边,就是要证
\[ F(s)\leq \frac{1}{2}\]
而根据上面的分析,我们有
\begin{align*}
F(s)&=F\left(1-\int_{0}^{1}{F(x)dx}\right)\\
&=F\left(\int_{0}^{1}{(1-F(x))dx}\right)\\
&\leq \int_{0}^{1}{F(1-F(x))dx} \qquad\text{(这里用了Jensen不等式)}\\
&=\int_{0}^{1}{F\left(\int_{x}^{1}{f(t)dt}\right)dx}\\
&\leq \int_{0}^{1}{\int_{x}^{1}{F(f(t))dt}dx}\qquad\text{(这里再次用了Jensen不等式)}\\
&\leq   \int_{0}^{1}{\int_{x}^{1}{1dt}dx}\\
&=\frac{1}{2}
\end{align*}
故左边得证。下面证右边,就是
\[ 1=F(1)=\int_{0}^{1}{f(t)dt}\leq \frac{1}{1-s}F(s) \]
\[ \Leftrightarrow 1-s\leq F(s) \]

\[ F(ts)\leq tF(s)+(1-t)F(0)=tF(s) \]
\[ F(ts+1-t)\leq tF(s)+(1-t)F(1)=tF(s)+1-t \]
我们有
\[ \int_{0}^{s}{F(x)dx}=s\int_{0}^{1}{F(ts)dt}\leq \frac{s}{2}F(s) \]
\[ \int_{s}^{1}{F(x)dx}=(1-s)\int_{0}^{1}{F(ts+1-t)dt}\leq \frac{1-s}{2}(F(s)+1) \]
上面两式相加得
\[ \frac{1}{2}(F(s)+1-s)\geq \int_{0}^{1}{F(x)dx}=xF(x)\bigg|_{0}^{1}-\int_{0}^{1}{xf(x)dx}=1-s \]
则有
\[ 1-s\leq F(s) \]
 
$\square$