先看12的。
设$f:[0,1]\rightarrow R$是连续可导函数,若$\displaystyle \int_{0}^{\frac{1}{2}}{f(x)dx}=0 $,求证:
\[ \int_{0}^{1}{f'(x)^{2}dx}\geq 12\left(\int_{0}^{1}{f(x)dx} \right)^{2} \]
(tian 275461)
证明:
\[ \int_{0}^{\frac{1}{2}}{f(x)dx}=0\Rightarrow \int_{0}^{\frac{1}{2}}{xf'(x)dx}=\frac{1}{2}f\left(\frac{1}{2}\right)\]
\begin{align*}
\left(\int_{0}^{1}{f(x)dx} \right)^{2}&=\left[\int_{\frac{1}{2}}^{1}{(f(x)-f(\frac{1}{2}))dx}+\frac{1}{2}f(\frac{1}{2}) \right]^{2}\\
&=\left[\int_{\frac{1}{2}}^{1}{\int_{\frac{1}{2}}^{x}{f'(t) dt}dx}+\int_{0}^{\frac{1}{2}}{xf'(x)dx} \right]^{2}\\
&=\left[\int_{\frac{1}{2}}^{1}{(1-t)f'(t)dt}+\int_{0}^{\frac{1}{2}}{xf'(x)dx} \right]^{2}\\
&\leq 2\left[\int_{\frac{1}{2}}^{1}{(1-t)f'(t)dt}\right]^{2}+2\left[\int_{0}^{\frac{1}{2}}{xf'(x)dx} \right]^{2}\\
&\leq 2\left[\int_{\frac{1}{2}}^{1}{(1-t)^{2}dt}\int_{\frac{1}{2}}^{1}{f'(t)^{2}dt}+\int_{0}^{\frac{1}{2}}{x^2dx}\int_{0}^{\frac{1}{2}}{f'(t)^{2}dt} \right]\\
&=\frac{1}{12}\int_{0}^{1}{f'(x)^{2}dx}
\end{align*}
$\square$
再看27的。
设$f(x)$在$[0,1]$连续可导且可积,若$\displaystyle \int_{\frac{1}{3}}^{\frac{2}{3}}{f(x)dx}=0 $
求证:
\[ \int_{0}^{1}{(f'(x))^{2}dx}\geq 27 \left(\int_{0}^{1}{f(x)dx}\right)^{2} \]
(tian275461)
证明
考虑
\[ G(x)= \left\{
\begin{array}{ll}
x, & \hbox{$x\in\left[0,\frac{1}{3}\right)$} \\
1-2x, & \hbox{$x\in\left[\frac{1}{3},\frac{2}{3}\right]$} \\
x-1, & \hbox{$x\in\left[\frac{2}{3},1\right)$}
\end{array}
\right. \]
由Cauchy-Schwarz容易证明.以下略
3个推广
1.若$f(x):[0,1]\rightarrow R$ 是连续可导函数,且$\displaystyle \int_{\frac{1}{2n}}^{\frac{1}{n}}{f(x)dx}=0 $,则有:
\[ \int_{0}^{1}{(f'(x))^{2}dx}\geq \frac{12n^{2}}{4n^2-10n+7}\left(\int_{0}^{1}{f(x)dx} \right)^{2} \]
提示:设
\[ g(x)=\left\{
\begin{array}{ll}
x, & \hbox{$x\in\left[0,\frac{1}{2n} \right]$} \\
1-(2n-1)x, & \hbox{$x\in\left[\frac{1}{2n},\frac{1}{n} \right]$} \\
x-1, & \hbox{$x\in\left[\frac{1}{n},1 \right]$.}
\end{array} \right. \]
然后仿照上面一样用Cauchy-Schwarz
2. 若$f(x):[a,b]\rightarrow R$ 是连续可导函数,且$\displaystyle \int_{a}^{b}{f(x)dx}=0 $,则有:
\[ \int_{a}^{2b-a}{(f'(x))^{2}dx}\geq \frac{3}{2(b-a)^{3}}\left(\int_{a}^{2b-a}{f(x)dx} \right)^{2} \]
提示:设
\[ g(x)=\left\{
\begin{array}{ll}
x-a, & \hbox{$x\in [a,b]$} \\
2b-a-x, & \hbox{$x\in [b,2b-a]$.}
\end{array} \right.\]
然后仿照上面一样用Cauchy-Schwarz
3. 若$f(x):[0,1]\rightarrow R$ 是连续可导函数,且$\displaystyle \int_{\frac{1}{2n+1}}^{\frac{2}{2n+1}}{f(x)dx}=0 $,则有:
\[ \int_{0}^{1}{(f'(x))^{2}dx}\geq \frac{3(2n+1)^{2}}{4n^2-6n+3}\left(\int_{0}^{1}{f(x)dx} \right)^{2} \]
提示:设
\[ g(x)=\left\{
\begin{array}{ll}
x, & \hbox{$x\in\left[0,\frac{1}{2n+1} \right]$} \\
1-2nx, & \hbox{$x\in\left[\frac{1}{2n+1},\frac{2}{2n+1} \right]$} \\
x-1, & \hbox{$x\in\left[\frac{2}{2n+1},1 \right]$.}\end{array}\right. \]
然后仿照上面一样用Cauchy-Schwarz