计算
\[ \sum_{n=1}^{+\infty}(-1)^{n-1}\frac{\ln{n}}{n} \]
解:
首先,显然看到上面的级数是条件收敛的,所以设
\[ S_{n}=\sum_{k=1}^{n}(-1)^{k-1}\frac{\ln{k}}{k} \]
于是
\begin{align*}
S_{2n}&=\sum_{k=1}^{n}\frac{\ln(2k-1)}{2k-1}-\sum_{k=1}^{n}\frac{\ln(2k)}{2k}\\
&=\sum_{k=1}^{2n}\frac{\ln{k}}{k}-\sum_{k=1}^{n}\frac{\ln{2k}}{k}\\
&=\sum_{k=1}^{2n}\frac{\ln{k}}{k}-\sum_{k=1}^{n}\frac{\ln{k}}{k}-\ln{2}\cdot\sum_{k=1}^{n}\frac{1}{k}\\
&=\sum_{k=n+1}^{2n}\frac{\ln{k}}{k}-\ln{2}\sum_{k=1}^{n}\frac{1}{k}\\
&=\sum_{k=1}^{n}\frac{\ln(n+k)}{n+k}-\ln{2}\sum_{k=1}^{n}\frac{1}{k}\\
&=\sum_{k=1}^{n}\frac{1}{n+k}\cdot\ln\left(1+\frac{k}{n}\right)+\ln{n}\sum_{k=1}^{n}\frac{1}{n+k}-\ln{2}\sum_{k=1}^{n}\frac{1}{k}\\
\end{align*}
这时注意到
\[ \lim_{n\to\infty}\sum_{k=1}^{n}\frac{1}{n+k}\cdot\ln\left(1+\frac{k}{n}\right)=\int_{0}^{1}\frac{\ln(1+x)}{1+x}dx=\frac{1}{2}\ln^{2}{2}\]
以及熟悉的
\[ \sum_{k=1}^{n}\frac{1}{k}=\ln{n}+\gamma+\varepsilon_{n} \]
于是
\[ \ln{n}\sum_{k=1}^{n}\frac{1}{n+k}-\ln{2}\sum_{k=1}^{n}\frac{1}{k}=\ln{n}\left(\sum_{k=1}^{n}\frac{1}{n+k}-\ln{2}\right)-\gamma\ln{2}\]
事实上又有
\[ \int_{\frac{1}{n}}^{1+\frac{1}{n}}\frac{1}{1+x}dx\leq\sum_{k=1}^{n}\frac{1}{n+k}\leq \ln{2}\]
不难算到
\[ \sum_{k=1}^{n}\frac{1}{n+k}-\ln{2}\sim o\left(\frac{1}{2n}\right) \]
于是
\[ \lim_{n\to\infty}\left[\ln{n}\sum_{k=1}^{n}\frac{1}{n+k}-\ln{2}\sum_{k=1}^{n}\frac{1}{k}\right]=-\gamma\ln{2} \]
最后
\[ \sum_{n=1}^{+\infty}(-1)^{n-1}\frac{\ln{n}}{n}=\frac{1}{2}\ln^{2}{2}-\gamma\ln{2} \]