May 12

计算

\[ \sum_{n=1}^{+\infty}(-1)^{n-1}\frac{\ln{n}}{n} \]

解:
首先,显然看到上面的级数是条件收敛的,所以设
\[ S_{n}=\sum_{k=1}^{n}(-1)^{k-1}\frac{\ln{k}}{k} \]
于是
\begin{align*}
S_{2n}&=\sum_{k=1}^{n}\frac{\ln(2k-1)}{2k-1}-\sum_{k=1}^{n}\frac{\ln(2k)}{2k}\\
&=\sum_{k=1}^{2n}\frac{\ln{k}}{k}-\sum_{k=1}^{n}\frac{\ln{2k}}{k}\\
&=\sum_{k=1}^{2n}\frac{\ln{k}}{k}-\sum_{k=1}^{n}\frac{\ln{k}}{k}-\ln{2}\cdot\sum_{k=1}^{n}\frac{1}{k}\\
&=\sum_{k=n+1}^{2n}\frac{\ln{k}}{k}-\ln{2}\sum_{k=1}^{n}\frac{1}{k}\\
&=\sum_{k=1}^{n}\frac{\ln(n+k)}{n+k}-\ln{2}\sum_{k=1}^{n}\frac{1}{k}\\
&=\sum_{k=1}^{n}\frac{1}{n+k}\cdot\ln\left(1+\frac{k}{n}\right)+\ln{n}\sum_{k=1}^{n}\frac{1}{n+k}-\ln{2}\sum_{k=1}^{n}\frac{1}{k}\\
\end{align*}
这时注意到
\[ \lim_{n\to\infty}\sum_{k=1}^{n}\frac{1}{n+k}\cdot\ln\left(1+\frac{k}{n}\right)=\int_{0}^{1}\frac{\ln(1+x)}{1+x}dx=\frac{1}{2}\ln^{2}{2}\]
以及熟悉的
\[ \sum_{k=1}^{n}\frac{1}{k}=\ln{n}+\gamma+\varepsilon_{n} \]
于是
\[ \ln{n}\sum_{k=1}^{n}\frac{1}{n+k}-\ln{2}\sum_{k=1}^{n}\frac{1}{k}=\ln{n}\left(\sum_{k=1}^{n}\frac{1}{n+k}-\ln{2}\right)-\gamma\ln{2}\]

事实上又有
\[  \int_{\frac{1}{n}}^{1+\frac{1}{n}}\frac{1}{1+x}dx\leq\sum_{k=1}^{n}\frac{1}{n+k}\leq \ln{2}\]
不难算到
\[ \sum_{k=1}^{n}\frac{1}{n+k}-\ln{2}\sim o\left(\frac{1}{2n}\right) \]
于是
\[ \lim_{n\to\infty}\left[\ln{n}\sum_{k=1}^{n}\frac{1}{n+k}-\ln{2}\sum_{k=1}^{n}\frac{1}{k}\right]=-\gamma\ln{2} \]
最后
\[ \sum_{n=1}^{+\infty}(-1)^{n-1}\frac{\ln{n}}{n}=\frac{1}{2}\ln^{2}{2}-\gamma\ln{2} \]

May 11

问题:正数列$\{a_{n}\}$满足$\displaystyle a_{n}\left(\sum_{i=1}^{n}a_{i}^{p}\right)=1$,且$p>-1$是已知常数,求$A,B$,使得$A,B$ 满足
\[ \lim_{n\to\infty}\frac{n}{\ln{n}}(A-na_{n}^{p+1})=B \]
解:设$S_{n}=\sum_{i=1}^{n}a_{i}^{p}$
容易证明
\[ \lim_{n\to\infty}{a_{n}}=0,\lim_{n\to\infty}S_{n}=+\infty \]
由O.Stolz定理得到
\[ \lim_{n\to\infty}na_{n}^{p+1}=\lim_{n\to\infty}\frac{1}{\frac{1}{a_{n+1}^{p+1}}-\frac{1}{a_{n}^{p}}}=\lim_{n\to\infty}\frac{1}{S_{n+1}^{p+1}-S_{n}^{p}} \]

\begin{align*}
 S_{n+1}^{p+1}-S_{n}^{p+1}&=S_{n+1}^{p+1}-(S_{n+1}-a_{n+1}^{p})^{p+1}\\
&=S_{n+1}-\sum_{k=0}^{p+1}C_{p+1}^{k}(-1)^{k}S_{n+1}^{p+1-k}\cdot a_{n+1}^{pk}\\
&=(p+1)S_{n+1}a_{n+1}-\frac{(p+1)p}{2!}S_{n+1}^{p-1}a_{n+1}^{2p}+\cdots\\
&=(p+1)+o(1) \qquad (n\to+\infty)
\end{align*}
所以
\[ A=\frac{1}{p+1} \]
同时有
\[ (p+1)a_{n}^{p+1}\sim \frac{1}{n} \]
这时
\[ \lim_{n\to\infty}\frac{n}{\ln{n}}(A-na_{n}^{p+1})=\lim_{n\to\infty}na_{n}^{p+1}\cdot\lim_{n\to\infty}\frac{A\cdot S_{n}^{p+1}-n}{\ln{n}}\]
又有O.Stolz定理
\begin{align*}
\lim_{n\to\infty}\frac{A\cdot S_{n}^{p+1}-n}{\ln{n}}&=\lim_{n\to\infty}\frac{A(S_{n+1}^{p+1}-S_{n}^{p})-1}{\ln\left(1+\frac{1}{n}\right)}\\
&=\lim_{n\to\infty}\dfrac{\frac{1}{p+1}((p+1)-\frac{(p+1)p}{2}S_{n+1}^{p-1}a_{n}^{2p}+\cdots)}{\frac{1}{n}}\\
&=\lim_{n\to\infty}\dfrac{-\frac{p}{2}S_{n+1}^{p-1}a_{n+1}^{2p}+o(S_{n+1}^{p-1}a_{n+1}^{2p})}{(p+1)a_{n+1}^{p+1}}\\
&=-\frac{p}{2(p+1)}
\end{align*}
所以
\[ B=-\frac{p}{2(p+1)^2} \]

May 11

设数列$\{a_{n}\}$满足
\[ a_{1}=1,a_{n+1}=a_{n}+e^{-a_{n}}\]
求证:
\[ \lim_{n\to\infty}n\left(\frac{a_{n}}{\ln{n}}-1\right)=\frac{1}{2}\]
证明:
我们先证里面层的,就是
\[ \lim_{n\to\infty}\frac{a_{n}}{\ln{n}}=1 \]
等价于
\[ \lim_{n\to\infty}\frac{e^{a_{n}}}{n}=1 \]
由条件得
\[ a_{n+1}>a_{n}\]
所以数列严格递增,因此有有限正极限或者极限为$+\infty$,若$A=\lim_{n\to\infty}a_{n}$,则有
\[ A=A+e^{-A}\]
\[ \Rightarrow 0=e^{-A}\]
因此只能有$A=+\infty$,这样就得到
\[ \lim_{n\to\infty}a_{n}=+\infty \]
\[ e^{a_{n+1}}=e^{a_{n}}\cdot e^{\frac{1}{e^{a_{n}}}}=e^{a_{n}}(1+e^{-a_{n}}+o(e^{-a_{n}}))\qquad (n\to+\infty) \]
所以就有
\[ e^{a_{n+1}}=e^{a_{n}}+1+o(e^{-a_{n}})\qquad (n\to\infty) \]
O.Stolz马上看到
\[  \lim_{n\to\infty}\frac{e^{a_{n}}}{n}=1 \]
这时
\[  \lim_{n\to\infty}\frac{a_{n}}{\ln{n}}=1 \]

\[ \lim_{n\to\infty}n\left(\frac{a_{n}}{\ln{n}}-1\right)=\lim_{n\to\infty}\frac{a_{n}}{\ln{n}}\cdot\lim_{n\to\infty}\frac{na_{n}-n\ln{n}}{a_{n}}  \]
又由O.Stolz得到
\[ \lim_{n\to\infty}\frac{na_{n}-n\ln{n}}{a_{n}}=\lim_{n\to\infty}\frac{(n+1)a_{n+1}-na_{n}-((n+1)\ln(n+1)-n\ln{n})}{a_{n+1}-a_{n}}\]
\[\frac{(n+1)a_{n+1}-na_{n}-((n+1)\ln(n+1)-n\ln{n})}{a_{n+1}-a_{n}}=\frac{(n+1)(a_{n}+e^{-a_{n}})-na_{n}-\ln\frac{(n+1)^{n+1}}{n^{n}}}{e^{-a_{n}}}\]
由$a_{n}\sim \ln{n}$,得到
\[ \frac{(n+1)(a_{n}+e^{-a_{n}})-na_{n}-\ln\frac{(n+1)^{n+1}}{n^{n}}}{e^{-a_{n}}}\sim \frac{\ln{\left(1-\frac{1}{n+1}\right)}+\frac{1}{n}(n+1)-n\ln\left(1+\frac{1}{n}\right)}{\frac{1}{n}}\sim \frac{1}{2}+o\left(\frac{1}{n}\right) \]
所以
\[  \lim_{n\to\infty}n\left(\frac{a_{n}}{\ln{n}}-1\right)=\frac{1}{2}\]

May 5

求极限
\[ \lim_{x\to+\infty}\sqrt{x}\int_{0}^{\frac{\pi}{4}}e^{x(\cos{t}-1)}\cos{t}dt \]



注意到
\[ \lim_{x\to 0}{\cos{x}}=1 \]
于是,对于任意$\varepsilon$,存在$\delta>0$,当$0<x<\delta$时
\[ \cos{x}>1-\varepsilon \]

\[ I=\int_{0}^{\delta}+\int_{\delta}^{\frac{\pi}{4}} \]

\[ \sqrt{x}\int_{0}^{\delta}e^{x(\cos{t}-1)}\cos{t}dt\leq  \sqrt{x}\int_{0}^{\delta}e^{x(\cos{t}-1)}dt\]
令$y=x(1-\cos{t}),\Rightarrow t=\arccos\left(1-\frac{y}{x}\right),\Rightarrow dt=\frac{1}{x\sqrt{1-\left(1-\frac{y}{x}\right)^{2}}}dy $,则
\begin{align*}
\sqrt{x}\int_{0}^{x(1-\cos\delta)}e^{x(\cos{t}-1)}dt&=\sqrt{x}\int_{0}^{x(1-\cos\delta)}e^{-y}\frac{1}{x\sqrt{1-\left(1-\frac{y}{x}\right)^{2}}}dy\\
&=\frac{1}{\sqrt{2}}\int_{0}^{x(1-\cos\delta)}e^{-y}y^{-\frac{1}{2}}\cdot \frac{1}{\sqrt{1-\frac{y}{2x}}}dy\\
&=\frac{1}{\sqrt{2}}\int_{0}^{x(1-\cos\delta)}e^{-y}y^{-\frac{1}{2}}\cdot\left(\frac{1}{\sqrt{1-\frac{y}{2x}}}-1\right)dy+\frac{1}{\sqrt{2}}\int_{0}^{x(1-\cos\delta)}e^{-y}y^{-\frac{1}{2}}dy\\
&=A+B
\end{align*}
显然有
\[ A=\frac{1}{\sqrt{2}}\int_{0}^{x(1-\cos\delta)}e^{-y}y^{-\frac{1}{2}}\cdot \frac{\frac{y}{2x}}{\sqrt{1-\frac{y}{2x}}\left(1+\sqrt{1-\frac{y}{2x}}\right)}dy\leq \frac{1}{2\sqrt{2}x}\int_{0}^{x}e^{-y}y^{\frac{1}{2}}dy\to 0   \]
\[ B=\frac{1}{\sqrt{2}}\int_{0}^{x(1-\cos\delta)}e^{-y}y^{-\frac{1}{2}}dy\to \sqrt{\frac{\pi}{2}}\qquad (x\to+\infty) \]

另外
\[ \sqrt{x}\int_{0}^{\delta}e^{x(\cos{t}-1)}\cos{t}dt\geq  \sqrt{x}\int_{0}^{\delta}e^{-\frac{1}{2}xt^{2}}(1-\varepsilon)dt\to \sqrt{\frac{\pi}{2}}(1-\varepsilon) \]
而不难证明
\[ \lim_{x\to+\infty}\int_{\delta}^{\frac{\pi}{4}}e^{x(\cos{t}-1)}\cos{t}dt=0 \]
这里只要用
\[ \cos{t}-1=-2\sin^{2}{\frac{t}{2}}\leq -2\left(\frac{t}{\pi}\right)^{2} \]
并注意到替换后的反常积分收敛就好,最后,由$\varepsilon$的任意性,得
\[ \lim_{x\to+\infty}\sqrt{x}\int_{0}^{\frac{\pi}{4}}e^{x(\cos{t}-1)}\cos{t}dt=\sqrt{\frac{\pi}{2}} \]

 

May 5

设$f(x)$在$(-\infty,+\infty)$上连续可导,且有
\[ \sup_{-\infty<x<+\infty}|e^{-x^2}f'(x)|<+\infty \]
证明
\[ \sup_{-\infty<x<+\infty}|xe^{-x^2}f(x)|<+\infty \]
证明:这里只考虑$x>0$的情况.
不妨设$M= \sup_{-\infty<x<+\infty}|e^{-x^2}f'(x)|$,则有
\[ |f'(x)|\leq Me^{x^2} \]
\[ |f(x)|\leq |f(x)-f(0)|+|f(0)|\leq \int_{0}^{x}|f'(t)|dt+|f(0)|\leq M\int_{0}^{x}e^{t^{2}}dt+|f(0)| \]
这样就有
\[ |xe^{-x^2}f(x)|\leq Mxe^{-x^2}\int_{0}^{x}e^{t^{2}}dt+xe^{-x^2}|f(0)| \]
注意到不等式
\[ e^{x^2}>1+x^2\geq 2x \]
这样
\[ xe^{-x^2}<1 \]
而我们又有
\[ xe^{-x^2}\int_{0}^{x}e^{t^{2}}dt\leq 1\]

\[ \sup_{-\infty<x<+\infty}|xe^{-x^2}f(x)|<+\infty \]