Processing math: 12%
Feb 16

此题由tian275461提供。题目非常困难,仅供观赏(水平一般的同学请勿模仿 )。

求积分
I=10lnxx2x1dx
解(tian275461)


由方程x2x1=0 的两个根,为了简单起见,我们记r1=φ=1+52,r2=152=1φ,
r1r2=5,φ2=φ+1,φ1φ=1φ2
则有

I=10lnxx2x1dx=1r1r210lnx(1xφ1x(1φ))dx=1510lnx(1xφφφx+1)dx=1510lnxxφdxφ510lnyφy+1dy=151φ0lnφuu1du15φ0lnuφu+1du=lnφ5(1φ01u1du+φ01u+1du)15(φ0lnu1+udu+1φ0lnu1udu)=lnφ5lnφ21φ15(φ0lnu1+udu+1φ0lnu1udu)=15(φ0lnu1+udu+1φ0lnu1udu)=15(1+φ1ln(u1)udu+1φ0lnu1udu)=15(φ21ln(u1)udu+1φ0lnu1udu)=15(11φ2ln(1u)lnuudu+1φ0lnu1udu)=15(1φ0lnuln(1u)udu+1φ0lnu1udu)=251φ0lnu1udu+151φ0ln(1u)1udu=251φ0lnu1udu25ln2φ=2511φ2ln(1u)udu25ln2φ=25(10ln(1u)udu1φ20ln(1u)udu)25ln2φ=π23525\Li2(1φ2)25ln2φ=π23525(π215ln2φ)25ln2φ=π255

最后一步用了dilogarithm函数的性质,详细可以参见http://mathworld.wolfram.com/Dilogarithm.html

______________________________________________________________________________

简单一点的做法

我们有
\Li2(x)=x0ln(1t)tdt

10lnxxa=1a10lnx1xadx=1a(10ln(xa)1xadx+lna1011xadx)=1a0lnt1tdtlnaa1011xadx=1a0ln(1t)tdt=\Li2(1a)
注意到
x2x1=(x1+52)(x152)
I=10lnxx2x1dx=15(10lnxx5+12dx10lnxx152dx)=15(\Li2(512)\Li2(5+12))
ϕ=5+12,则
I=15(\Li2(1ϕ)\Li2(ϕ))
我们还知道公式
\Li2(1ϕ)=110π2ln2ϕ
\Li2(ϕ)=110π2ln2ϕ

I=155π2

Feb 16

f(x)C(2)(0,1),且lim.若存在M>0,使得(1-x)^{2}|f''(x)|\leq M (0<x<1)
\lim_{x\rightarrow 1^{-}}{(1-x)f'(x)}=0
证明:
t,x\in(0,1): t>x,用Taylor公式
f(t)=f(x)+f'(x)(t-x)+f''(\xi)\frac{(t-x)^{2}}{2}, x<\xi<t
并取t=x+(1-x)\delta, (0<\delta<\frac{1}{2}) ,我们有
f(t)-f(x)=\delta (1-x)f'(x)+\frac{\delta^{2}}{2}f''(\xi)(1-x)^{2}
\Leftrightarrow (1-x)f'(x)=\frac{f(t)-f(x)}{\delta}-\frac{\delta}{2}f''(\xi)(1-x)^{2}
|f'(x)(1-x)|\leq \frac{|f(t)-f(x)|}{\delta}+\frac{\delta}{2}|f''(\xi)|(1-x)^{2}
注意到 \xi=x+(t-x)\theta   , 0<\theta<1
\Rightarrow (1-\xi)^{2}=(1-x)^{2}(1-\delta\theta)^{2}>\frac{1}{4}(1-x)^{2}
(这里是由于 0<\delta\theta<\frac{1}{2} )
及条件 (1-x)^{2}|f''(x)|\leq M (0<x<1)
\frac{\delta}{2}|f''(\xi)|(1-x)^{2}=|f''(\xi)|(1-\xi)^{2}\cdot\frac{(1-x)^{2}}{(1-\xi)^{2}}\cdot\frac{\delta}{2}<2M\delta  
\Rightarrow |f'(x)(1-x)|\leq \frac{|f(t)-f(x)|}{\delta}+2M\delta
现在,对\forall \varepsilon ,取 \delta=\frac{\varepsilon}{4M}
对上述 \delta\varepsilon 存在 \eta>0
\forall 0<1-x<\eta
|f(t)-f(x)|<\frac{\delta\varepsilon}{2}
这样,对 \forall 0<1-x<\eta ,就有
\Rightarrow |f'(x)(1-x)|<\varepsilon
故得 \lim_{x\rightarrow 1^{-}}{(1-x)f'(x)}=0

\square

Feb 16

求证:
\int_{0}^{\frac{\pi}{2}}{x\ln{\sin{x}}\ln{\cos{x}}dx}=\frac{(\pi\ln{2})^{2}}{8}-\frac{\pi^{4}}{192}
证明:
首先,我们设
A=\int_{0}^{\frac{\pi}{2}}{x\ln{\sin{x}}\ln{\cos{x}}dx}
很显然,
A=\frac{\pi}{4}\int_{0}^{\frac{\pi}{2}}{\ln{\sin{x}}\ln{\cos{x}}dx}
所以,只需要求
B=\int_{0}^{\frac{\pi}{2}}{\ln{\sin{x}}\ln{\cos{x}}dx}
由傅里叶级数不难得到
\ln{(2\cos{\frac{x}{2}})}=\sum_{n=1}^{\infty}{(-1)^{n-1}\frac{\cos{nx}}{n}}, \qquad -\pi<x<\pi
2x替换x,得到
\ln{(2\cos{x})}=\sum_{n=1}^{\infty}{(-1)^{n-1}\frac{\cos{2nx}}{n}}, \qquad -\frac{\pi}{2}<x<\frac{\pi}{2}
而另一方面
\begin{align*} \int_{0}^{\frac{\pi}{2}}{\cos{2nx}\ln{\sin{x}}dx}&=\int_{0}^{\frac{\pi}{2}}{\ln{\sin{x}}d\frac{\sin{2nx}}{2n}}\\ &=\frac{1}{2n}\sin{2nx}\cdot\ln{\sin{x}}|_{0}^{\frac{\pi}{2}}-\frac{1}{2n}\int_{0}^{\frac{\pi}{2}}{\frac{\cos{x}\cdot\sin{2nx}}{\sin{x}}dx}\\ &=-\frac{1}{4n}\int_{0}^{\frac{\pi}{2}}{\frac{\sin{(2n+1)x}+\sin{(2n-1)x}}{\sin{x}}dx}\\ &=-\frac{\pi}{4n} \end{align*}
所以
\begin{align*} \int_{0}^{\frac{\pi}{2}}{\ln{2\cos{x}}\cdot\ln{\sin{x}}dx}&=\sum_{n=1}^{\infty}{(-1)^{n}\frac{\pi}{4n^2}}\\ &=B+\ln{2}\cdot\int_{0}^{\frac{\pi}{2}}{\ln{\sin{x}}dx} \end{align*}
马上看到
B=\frac{\pi}{2}\ln^{2}{2}-\frac{1}{48}{\pi^{3}}
A= \frac{(\pi\ln{2})^{2}}{8}-\frac{\pi^{4}}{192}
Done!

\square

——————————————————————————————————————————————————————

说实话,那个

\ln{(2\cos{\frac{x}{2}})}=\sum_{n=1}^{\infty}{(-1)^{n-1}\frac{\cos{nx}}{n}}, \qquad -\pi<x<\pi

真心很有用,用这个可以算出下面结果

\int_{0}^{\frac{\pi}{2}}{\ln^{2}{\sin{x}}dx}=\int_{0}^{\frac{\pi}{2}}{\ln^{2}{\cos{x}}dx}=\frac{\pi^3}{24}+\frac{\pi}{2}\ln^{2}{2}

只要考虑傅里叶级数正交就好。

 

Feb 13

本帖的题目均来自tian275461,版权由tian275461所有,未经许可,禁止转载。

中值定理:

f是在R上有四阶连续可导的函数,x\in [0,1],满足
\int_{0}^{1}f(x)dx+3f\left(\dfrac{1}{2}\right)=8\displaystyle\int_{\frac{1}{4}}^{\frac{3}{4}}f(x)dx
证明:存在c\in(0,1),使得f^{(4)}(c)=0

证明:令
G(t)=\int_{-t}^{t}g(x)dx-8\int_{-\frac{t}{2}}^{\frac{t}{2}}g(x)dx
其中g(x)=f\left(x+\dfrac{1}{2}\right)-f\left(\dfrac{1}{2}\right)
易得
G(0)=0,G\left(\dfrac{1}{2}\right)=0
由\Rolle 定理有存在t_{0}\in(0,1/2)使得G'(t_{0})=0.由于
G'(t)=g(t)-4g(\frac{t}{2})-4g(-\frac{t}{2})+g(-t)
G'(0)=0,G'(t_{0})=0,则由\Rolle 定理有:G''(t_{1})=0,又
G''(t)=g'(t)-2g'(\frac{t}{2})+2g'(-\frac{t}{2})-g'(-t)
显然G''(0)=0,故由中值定理有G'''(t_{2})=0\\

G'''(t)=(g''(t)-g''(\frac{t}{2}))-(g''(-\frac{t}{2})-g''(-t))

G'''(t_{2})=(g''(t_{2})-g''(\frac{t_{2}}{2}))-(g''(-\frac{t_{2}}{2})-g''(-t_{2}))
又由拉格朗日中值定理有存在\theta_{+}\in(t_{2}/2,t_{2}),\theta_{-}\in(-t_{2},-\frac{t_{2}}{2}),\\
(g''(t_{2})-g''(\frac{t_{2}}{2}))-(g''(-\frac{t_{2}}{2})-g''(-t_{2}))=g'''(\theta_{+})\dfrac{t_{2}}{2}-g'''(\theta_{-})\dfrac{t_{2}}{2}
注意t_{2}\neq 0
g'''(\theta_{+})-g'''(\theta_{-})=0
再利用拉格朗日中值定理
g''''(\theta)=0
f^{(4)}\left(\theta+\dfrac{1}{2}\right)=0
\theta +\dfrac{1}{2}\longrightarrow \theta,即有
f^{(4)}(\theta)=0

\square

级数求和:

\sum_{n=1}^{\infty}\dfrac{H_{n}}{n^3}

显然有
-n\displaystyle\int_{0}^{1}(1-x)^{n-1}\ln{x}dx=-\displaystyle\sum_{k=1}^{n}C_{n}^{k}\dfrac{(-1)^k}{k}=H_{n}
证明:考虑积分
\displaystyle\int_{0}^{1}\dfrac{1-(1-x)^n}{x}dx=\displaystyle\int_{0}^{1}\sum_{k=1}^{n}C_{n}^{k}(-1)^{k+1}x^{k-1}dx=\displaystyle\sum_{k=1}^{n}\dfrac{C_{n}^{k}(-1)^{k+1}}{k}
另外一方面
\displaystyle\int_{0}^{1}\dfrac{1-(1-x)^n}{x}dx=\displaystyle\int_{0}^{1}\dfrac{1-u^n}{1-u}du=H_{n}
所以
\displaystyle\sum_{n=1}^{\infty}\dfrac{H_{n}}{n^3}=-\displaystyle\sum_{n=1}^{\infty}\dfrac{1}{n^2}\displaystyle\int_{0}^{1}(1-x)^{n-1}\ln{x}dx=-\displaystyle\int_{0}^{1}\displaystyle\sum_{n=1}^{\infty}\dfrac{(1-x)^{n-1}}{n^2}\ln{x}dx
由于
\displaystyle\sum_{n=1}^{\infty}\dfrac{(1-x)^n}{n^2}=\dfrac{Li_{2}(1-x)}{1-x}

\displaystyle\sum_{n=1}^{\infty}\dfrac{H_{n}}{n^3}=-\displaystyle\int_{0}^{1}\dfrac{Li_{2}(1-x)\ln{x}}{1-x}dx=\dfrac{1}{2}(Li_{2}(1-x))^2|_{0}^{1}=\dfrac{1}{2}\left(\dfrac{\pi^2}{6}\right)^2
\square

 

积分求值:
\displaystyle\int_{0}^{\infty}\dfrac{1}{(x^4+(1+2\sqrt{2})x^2+1)(x^{100}-x^{98}+\cdots+1)}dx
解 设
I=\displaystyle\int_{0}^{\infty}\dfrac{1}{(x^4+(1+2\sqrt{2})x^2+1)(x^{100}-x^{98}+\cdots+1)}dx
x=\dfrac{1}{y}

I=\displaystyle\int_{0}^{\infty}\dfrac{x^{102}}{(x^4+(1+2\sqrt{2})x^2+1)(x^{100}-x^{98}+\cdots+1)}dx
注意
x^{100}-x^{98}+\cdots+1=\dfrac{1+x^{102}}{1+x^2}
所以
2I=\displaystyle\int_{0}^{\infty}\dfrac{1+x^2}{x^4+(1+2\sqrt{2})x^2+1}dx

I=\frac{1}{2}\displaystyle\int_{0}^{\infty}\dfrac{1+\dfrac{1}{x^2}}{x^2+\dfrac{1}{x^2}+1+2\sqrt{2}}dx=\dfrac{\pi}{2(1+\sqrt{2})}

\square

积分不等式:

1.求所有的连续可导函数f:[0,1]\longrightarrow (0,\infty),满足f(1)=ef(0),且
\displaystyle\int_{0}^{1}\dfrac{dx}{(f(x))^2}+\displaystyle\int_{0}^{1}(f'(x))^2dx\le 2
解:注意
\begin{align*} &0\le\displaystyle\int_{0}^{1}\left(f'(x)-\dfrac{1}{f(x)}\right)^2dx=\displaystyle\int_{0}^{1}(f'(x))^2dx-2\displaystyle\int_{0}^{1}\dfrac{f'(x)}{f(x)}dx+\displaystyle\int_{0}^{1}\dfrac{dx}{(f(x))^2}\\ &=\left(\displaystyle\int_{0}^{1}(f'(x))^2dx+\displaystyle\int_{0}^{1}\dfrac{dx}{(f(x))^2}dx\right)-2\displaystyle\int_{0}^{1}(\ln{f(x)})'dx\\ &=\left(\displaystyle\int_{0}^{1}(f'(x))^2dx+\displaystyle\int_{0}^{1}\dfrac{dx}{(f(x))^2}dx\right)-2\ln{\dfrac{f(1)}{f(0)}}\\ &\le 0 \end{align*}
所以
f(x)f'(x)=1
\Longrightarrow f(x)=\sqrt{2x+C},C>0
由于\dfrac{f(1)}{f(0)}=e\Longrightarrow C=\dfrac{2}{e^2-1}

f(x)=\sqrt{2x+\dfrac{2}{e^2-1}}
\square

2.设f,g:[0,1]\longrightarrow (0,+\infty)是连续的,且f,\dfrac{g}{f}递增的,求证:
\displaystyle\int_{0}^{1}\left(\dfrac{\displaystyle\int_{0}^{x}f(t)dt}{\displaystyle\int_{0}^{x}g(t)dt}\right)dx\le 2\displaystyle\int_{0}^{1}\dfrac{f(x)}{g(x)}dx
并说明右边系数2是最佳的.
证明:由切比雪夫不等式有
\left(\dfrac{1}{x}\displaystyle\int_{0}^{x}f(t)dt\right)\left(\dfrac{1}{x}\displaystyle\int_{0}^{x}\dfrac{g(t)}{f(t)}dt\right)\le\dfrac{1}{x}\displaystyle\int_{0}^{x}g(t)dt

\dfrac{\displaystyle\int_{0}^{x}f(t)dt}{\displaystyle\int_{0}^{x}g(t)dt}\le\dfrac{x}{\displaystyle\int_{0}^{x}\dfrac{g(t)}{f(t)}dt}
另外由Cauchy-Schwarz有
\left(\displaystyle\int_{0}^{x}\dfrac{g(t)}{f(t)}dt\right)\left(\displaystyle\int_{0}^{x}\dfrac{t^2f(t)}{g(t)}dt\right)\ge\left(\displaystyle\int_{0}^{x}tdt\right)^2=\dfrac{x^4}{4}

\dfrac{1}{\displaystyle\int_{0}^{x}\dfrac{g(t)}{f(t)}dt}\le\dfrac{4}{x^4}\displaystyle\int_{0}^{x}\dfrac{t^2f(t)}{g(t)}dt
所以有
\dfrac{\displaystyle\int_{0}^{x}f(t)dt}{\displaystyle\int_{0}^{x}g(t)dt}\le\dfrac{4}{x^3}\displaystyle\int_{0}^{x}\dfrac{t^2f(t)}{g(t)}dt
故有
\begin{align*} \displaystyle\int_{0}^{1}\dfrac{\displaystyle\int_{0}^{x}f(t)dt}{\displaystyle\int_{0}^{x}g(t)dt}dx&\le\displaystyle\int_{0}^{1}\left(\displaystyle\int_{0}^{x}\dfrac{4t^2f(t)}{x^3g(t)}dt\right)dx =\displaystyle\int_{0}^{1}\left(\displaystyle\int_{t}^{1}\dfrac{4t^2f(t)}{x^3g(t)}dx\right)dt\\ &=\displaystyle\int_{0}^{1}\dfrac{4t^2f(t)}{g(t)}\left(\displaystyle\int_{t}^{1}\dfrac{dx}{x^3}\right)dt\\ &=2\displaystyle\int_{0}^{1}\dfrac{f(t)}{g(t)}(1-t^2)dt\\ &\le 2\displaystyle\int_{0}^{1}\dfrac{f(t)}{g(t)}dt \end{align*}
另外一方面:我们令f(t)=1,g(t)=t+\varepsilon,\varepsilon>0
\displaystyle\int_{0}^{1}\dfrac{\displaystyle\int_{0}^{x}f(t)dt}{\displaystyle\int_{0}^{x}g(t)dt}dx =\displaystyle\int_{0}^{1}\dfrac{x}{\dfrac{1}{2}x^2+\varepsilon x}dx=2\ln{(1+2\varepsilon)}-2\ln{2}-2\ln{\varepsilon}
\displaystyle\int_{0}^{1}\dfrac{f(t)}{g(t)}dt=\displaystyle\int_{0}^{1}\dfrac{dt}{t+\varepsilon}=\ln{(1+\varepsilon)}-\ln{\varepsilon}
所以
\displaystyle\lim_{\varepsilon\to 0}\dfrac{2\ln{(1+2\varepsilon)}-2\ln{2}-2\ln{\varepsilon}}{\ln{(1+\varepsilon)}-\ln{\varepsilon}}=2\displaystyle\lim_{\varepsilon\to 0}\dfrac{-\dfrac{\ln{(1+2\varepsilon)}}{\ln{\varepsilon}}+\dfrac{\ln{2}}{\ln{\varepsilon}}+1}{-\dfrac{\ln{(1+\varepsilon)}}{\ln{\varepsilon}}+1}=2

\square

Jan 30

本帖不定期更新

1.《微积分学教程》 格里高利·米哈伊洛维奇·菲赫金哥尔茨(ГригорийМихайлович Фихтенгольц,1888-1959)

第一卷

Download

提取密码(password):1308

第二卷

Download

 提取密码(password):3796

第三卷

Download

提取密码(password):2154

2.《数学分析习题演练 》 周民强

第一册

Download

提取密码(password):6888

第二册

Download

提取密码(password):6646

第三册

Download

提取密码(password):2358