Mar 12

设$f(x)$是$[0,1]$上的非负凹函数,则有

$$ \int_{0}^{1}{f^{p}(x)dx}\leq \frac{2^p}{p+1}\left(\int_{0}^{1}{f(x)dx}\right)^p $$

传说中的Favard不等式(1933年的),找了好久没找到证明,只谷歌到一篇介绍推广的文章《Some New Results Related to Favard’s Inequality》

好像在Mathematic in Science and Engineering, vol 187,1992年那本上有,可惜下载不到。后来发现《常用不等式》第4版452页的Berwarld不等式就是这个的推广.(首先没看出来,那个范数不太懂)

解答来着风碎便士同学。参看博士家园

http://www.math.org.cn/forum.php?mod=viewthread&tid=26438&extra=page%3D1

With out loss of generally,we consider the case $f(0)=f(1)=0$,and $f(x)$ has order continuous derivative,Therefore
$$f''(x)\leq 0 $$
Thus
$$ f(x)=-\int_{0}^{1}{K(x,t)f''(t)dt} $$
Where $K(x,t)$ is Green function.
$$ K(x,t)=\left\{
  \begin{array}{ll}
   t(1-x)  & \hbox{$0\leq t\le x\le 1$} \\
    x(1-t)  & \hbox{$0\leq x\le t\le 1$}
  \end{array}
\right.
$$
Then by Minkowski inequality,we have
\begin{align}
\left(\int_{0}^{1}{f^{p}(x)dx}\right)^{\frac{1}{p}}&=\left(\int_{0}^{1}{\left(\int_{0}^{1}{K(x,t)(-f''(t))dt}\right)^{p}dx     }\right)^{\frac{1}{p}}\\
&\leq \int_{0}^{1}{\left(\int_{0}^{1}{K^{p}(x,t)(-f''(t))^{p}dx}\right)dt}\\
&=\frac{1}{(p+1)^{\frac{1}{p}}}\int_{0}^{1}{t(1-t)|f''(t)|dt}
\end{align}
On the other hand
\begin{align}
\int_{0}^{1}{f(x)dx}&=-\int_{0}^{1}{\int_{0}^{1}{K(x,t)f''(t)dt}  dx}\\
&=-\int_{0}^{1}{\int_{0}^{1}{K(x,t)f''(t)dx}  dt}\\
&=-\frac{1}{2}\int_{0}^{1}{t(1-t)f''(t)dt} 
\end{align}
Therefore
$$ \int_{0}^{1}{f^{p}(x)dx}\leq \frac{2^p}{p+1}\left(\int_{0}^{1}{f(x)dx}\right)^p $$


 

Mar 9

设$f(x)$在$[0,1]$上连续,且$\displaystyle \int_{0}^{1}{f(x)dx}=0$,证明:在区间$(0,1)$内存在$c$使得
$$\displaystyle \int_{0}^{c}{xf(x)dx}=0$$,
 

证明

\[ F(x)=\int_{0}^{x}{f(t)dt} \]
由条件得
\[ F(0)=F(1)=0 \]
于是,我们要证明区间$(0,1)$内存在$c$使得
\[ cF(c)=\int_{0}^{c}{F(t)dt} \]
构造辅助函数
\[ G(x)=\frac{\int_{0}^{x}{F(t)dt}}{x} \]
并作连续开拓
\[ G(x)=\left\{
     \begin{array}{ll}
       \frac{\int_{0}^{x}{F(t)dt}}{x}, & \hbox{$0<x\leq 1$;} \\
       0, & \hbox{x=0.}
     \end{array}
   \right.\]
显然$G(x)$是$[0,1]$上的连续函数,所以必能取到最大值和最小值。下证明在$x=1$处$G(x)$既不能取到最大值,也不能取到最小值。\\
假设在$x=1$处$G(x)$取到最大值,也即有
\[ G(x)\leq G(1) \]
\[ \Leftrightarrow\int_{0}^{x}{F(t)dt}\leq x\int_{0}^{1}{F(t)dt}=x\int_{0}^{x}{F(t)dt}+x\int_{x}^{1}{F(t)dt} \]
\[\Rightarrow \frac{\int_{0}^{x}{F(t)dt}}{x}\leq \frac{\int_{x}^{1}{F(t)dt}}{1-x} \]
上式令$x\rightarrow1 $
得到
\[ \int_{0}^{1}{F(x)dx}\leq F(1)=0 \]
这说明
\[ G(1)\leq G(0) \]
所以$G(x)$只能为常数函数,否则矛盾。
同样可以说明$G(x)$在$x=1$处不能取到最小值。
故必存在一点$c\in(0,1)$使得$G(x)$取到最值。
显然满足
\[ cF(c)=\int_{0}^{c}{F(t)dt} \]
也即
\[ \int_{0}^{c}{xf(x)dx}=0 \]
由此,命题得证。

Mar 7

设$\{a_{n}\}$是正序列,且$ \displaystyle \varlimsup_{n\rightarrow\infty}{\sqrt[n]{a_{n}}}=1 $,证明
\[ \varlimsup_{n\rightarrow\infty}{\sqrt[n]{a_{1}+a_{1}+\cdots+a_{n}}}=1 \]
证明 注意到
\[ 1=\varlimsup_{n\rightarrow\infty}{\sqrt[n]{a_{n}}}\leq \varlimsup_{n\rightarrow\infty}{\sqrt[n]{a_{1}+a_{1}+\cdots+a_{n}}} \]
所以只要估计
\[ \sum_{k=1}^{n}{a_{k}} \]
的一个上界即可。
而由 $ \displaystyle \varlimsup_{n\rightarrow\infty}{\sqrt[n]{a_{n}}}=1 $
知,对任意给定的$\varepsilon>0$,存在$N>0$,当$n>N$时
\[ a_{n}\leq (1+\varepsilon)^{n} \]
设\[ A=\sum_{k=1}^{N}{a_{k}} \]

\[ \sum_{k=1}^{n}{a_{k}}<A+\frac{(1+\varepsilon)^{n-N+1}}{\varepsilon} \]
而当$n$充分大时$ \frac{(1+\varepsilon)^{n-N+1}}{\varepsilon}>A $
所以
\[ \varlimsup_{n\rightarrow\infty}{\sqrt[n]{ \frac{(1+\varepsilon)^{n-N+1}}{\varepsilon} }}=1 \]
因此
 \[ \varlimsup_{n\rightarrow\infty}{\sqrt[n]{a_{1}+a_{1}+\cdots+a_{n}}}=1 \]
 

Mar 7

设$f\in C^{2}[a,\infty)$,若积分
\[ \int_{a}^{+\infty}{f^{2}(x)dx},\qquad \int_{a}^{+\infty}{[f''(x)]^{2}dx} \]
均收敛,则$\displaystyle \int_{a}^{+\infty}{[f'(x)]^{2}dx}$收敛。


证明:由Cauchy-Schwarz不等式知道
\[ \left(\int_{a}^{+\infty}|f(x)f''(x)|dx\right)^{2}\leq \left(\int_{a}^{+\infty}f^{2}(x)dx\right)\left(\int_{0}^{+\infty}(f''(x))^2dx\right)\]
于是反常积分$\displaystyle \int_{a}^{+\infty}f(x)f''(x)dx$收敛。又注意到
\begin{align*}
 \int_{a}^{x}(f'(t))^2dt&=f'(t)f(t)\bigg|_{a}^{x}-\int_{a}^{x}f(t)f''(t)dt\\
 &= f'(x)f(x)-f'(a)f(a)-\int_{a}^{x}f(t)f''(t)dt \tag{1}
\end{align*}
下证明
\[ -\infty<\varliminf_{x\to+\infty}f'(x)f(x)<+\infty \]
反证,若$\displaystyle\varliminf_{x\to+\infty}f'(x)f(x)=-\infty$,则存在数列$\{x_{n}\}$满足$x_{n}\to+\infty$,但$f'(x_{n})f(x_{n})\to-\infty$,这样,
\[ \int_{a}^{x_{n}}(f'(t))^2dt=f'(x_{n})f(x_{n})-f'(a)f(a)-\int_{a}^{x_{n}}f(t)f''(t)dt\to -\infty \qquad (n\to\infty)\]
显然不科学。
若$\displaystyle\varliminf_{x\to+\infty}f'(x)f(x)=+\infty$,则对$\forall L>0$,存在$M>0$,当$x\geq M$时$f'(x)f(x)>L$,这时有
\[ f^{2}(x)-f^{2}(M)=2f'(\theta)f(\theta)(x-M)>2L(x-M)\qquad (\theta\in(M,x))\]

\[ f^{2}(x)>f^{2}(M)+2L(x-M) \]
\[ \Rightarrow \int_{M}^{+\infty}f^2(x)dx>\int_{M}^{+\infty}(f^2(M)+2L(x-M))dx=+\infty \]
矛盾。故
\[ -\infty<\varliminf_{x\to+\infty}f'(x)f(x)<+\infty \]
不妨设
\[ A=\varliminf_{x\to+\infty}f'(x)f(x)\]
则存在数列$\{x_{n}\}$满足$x_{n}\to+\infty$,$f'(x_{n})f(x_{n})\to A$,这时
\[ \int_{a}^{x_{n}}(f'(t))^2dt=f'(x_{n})f(x_{n})-f'(a)f(a)-\int_{a}^{x_{n}}f(t)f''(t)dt\]
令$n\to\infty$,则
\[ \int_{a}^{+\infty}(f'(t))^2dt=A-f'(a)f(a)-\int_{a}^{+\infty}f(x)f''(x)dx \]
是收敛的。
真神指出:在讨论$f'(x)f(x)$位于无穷远的情况时,可以考察$f^{2}(x)$的极值情况,若$f^2(x)$在无穷远处恒有极值,则运用Farmat定理知道存在数列$\{x_{n}\}$满足$x_{n}\to+\infty$,$f^{2}(x_{n})$取极值,则$f'(x_{n})f(x_{n})=0$,若$f^{2}(x)$仅在有限区间内有极值,则说明$f^2(x)$在无穷远处单调递减趋于$0$,因此,考虑
\[ f^{2}(n+1)-f^2(n)=2f'(x_{n})f(x_{n})\to 0\qquad (n\to\infty) \]
依然可以找到这样的序列满足$f'(x_{n})f(x_{n})\to 0$.

 

Mar 7

      设$f(x)$是定义在R上的实函数,且对$\forall x$有$f(x),f'(x),f''(x),f'''(x)>0$,假设对$\forall x$有$f'''(x)<f(x)$证明:对一切$x$都有$f'(x)<2f(x)$.
 

证明 对任意固定的$c$,令
\[g(x)=f(x)-f'(x)(x-c)+\frac{f''(x)}{2}(x-c)^{2}\]

\[ g'(x)=\frac{f'''(x)}{2}(x-c)^{2}\geq 0 \]
所以$g(x)$是递增函数,则对$\forall y>0$
\[ g(c+y)>g(c-y) \]
也就是
\[ g(c+y)=f(c+y)-yf'(c+y)+\frac{f''(c+y)}{2}y^{2}>f(c-y)+yf'(c-y)+\frac{f''(c-y)}{2}y^{2}=g(c-y)\]
注意到
\[ f(c+y)-yf'(c+y)+\frac{f''(c+y)}{2}y^{2}>f(c-y)+yf'(c-y)+\frac{f''(c-y)}{2}y^{2}>\frac{f''(c-y)}{2}y^{2} \]
故有
\[ f(c+y)-yf'(c+y)>\frac{1}{2}y^{2}[f''(c-y)-f''(c+y)] \]
由拉格朗日中值定理知存在$\theta\in(c-y,c+y)$,满足
\[ f''(c+y)-f''(c-y)=2yf'''(\theta)\leq 2yf(\theta)<2yf(c+y) \]
所以
\[ f(c+y)-yf'(c+y)+y^3f(c+y)>0 \]
而由条件可推断
\[\frac{1+y^3}{y}f(c+y)>f'(c+y) \]
当$y=\frac{1}{\sqrt[3]{2}}$上面的$ \frac{1+y^3}{y}=\frac{3}{\sqrt[3]{4}}<2,$
故命题得证。

下面一种证明来着风碎便士同学。
令$c\geq 0$是$f(x)$的下确界,则$f(x)$在$x\rightarrow -\infty$时单调递于$c$,并且容易得到$f'(x),f''(x)$在$x\rightarrow -\infty$时均单调趋于$0$.
这是由于$f''(x)>0$说明$f'(x)$是递增的,故$\displaystyle \lim_{x\rightarrow -\infty}{f'(x)}$要么为$-\infty$,要么为一个常数,而由$\displaystyle \lim_{x\rightarrow -\infty}{f(x)}=c$知,$\displaystyle \lim_{x\rightarrow -\infty}{f'(x)}=0$(其他情况均会矛盾),同样可说明$\displaystyle \lim_{x\rightarrow -\infty}{f''(x)}=0$
从而
\[ f'''(x)f''(x)<f(x)f''(x)<f(x)f''(x)+(f'(x))^2 \]
两边从$a$到$x$积分,得
\[ \frac{1}{2}(f''(x))^2-\frac{1}{2}(f''(a))^2<f(x)f'(x)-f(a)f'(a) \]
再令$a\rightarrow -\infty$得到
\[ (f''(x))^2\leq 2f(x)f'(x) \]
从而
\[ f'''(x)(f''(x))^2\leq 2f^{2}(x)f'(x) \]
两边从$a$到$x$积分,再令$a\rightarrow -\infty$得到
\[ (f''(x))^3\leq 2f^{3}(x) \]
\[ f''(x)\leq \sqrt[3]{2}f(x) \]
\[ f'(x)f''(x) \leq \sqrt[3]{2}f(x)f'(x) \]
两边从$a$到$x$积分,再令$a\rightarrow -\infty$得到
\[ f'(x)\leq \sqrt[6]{2}f(x)<2f(x) \]