设$a,b,c\geq 0$,$a+b+c=3$,证明
\[ \frac{a}{\sqrt{b^2+b+1}}+\frac{b}{\sqrt{c^2+c+1}}+\frac{c}{\sqrt{a^2+a+1}}\geq \sqrt{3} \]
证明:
齐次化后就是
\[ \sum\frac{a}{\sqrt{a^2+13b^2+c^2+5ab+5bc+2ac}}\geq \frac{\sqrt{3}}{3} \]
由Holder
\begin{align*}
&\left(\sum\frac{a}{\sqrt{a^2+13b^2+c^2+5ab+5bc+2ac}}\right)^{2}\left(\sum a(a+c)^3(a^2+13b^2+c^2+5ab+5bc+2ac) \right)\\
&\geq \left(\sum{a^2}+\sum{ab}\right)^3
\end{align*}
所以只要证明
\[ 3\left(\sum{a^2}+\sum{ab}\right)^3\geq \left(\sum a(a+c)^3(a^2+13b^2+c^2+5ab+5bc+2ac) \right) \]
就是
\[ 2\sum{a^6}+3\sum{a^5b}+4\sum{ab^5}+2\sum{a^2b^3c}+2\sum{a^4bc}-14\sum{ab^3c^2}+11\sum{a^3b^3}+8\sum{a^2b^4}-54a^2b^2c^2\geq 0\]
这个成立,由于
\[ 2\sum{a^2b^3c}+2\sum{a^4bc}\geq 4\sum{a^3b^2c} \]
由AM-GM
\[ \frac{72}{126}a^5b+\frac{36}{126}b^5c+\frac{18}{126}c^5a\geq a^3b^2c\]
得到
\[ \sum{a^5}b\geq \sum{a^3b^2c}\]
同时
\[ \frac{4}{6}a^4b^2+\frac{1}{6}b^4c^2+\frac{1}{6}c^4a^2\geq a^3b^2c \]
得到
\[ \sum{a^4b^2}\geq \sum{a^3b^2c}\]
显然又有
\[ \sum{a^3b^3}\geq \sum{a^3b^2c} \]
这样
\[2\sum{a^6}+3\sum{a^5b}+4\sum{ab^5}+2\sum{a^2b^3c}+2\sum{a^4bc}+11\sum{a^3b^3}+8\sum{a^2b^4}\geq 32\sum{a^3b^2c}\]
Done!
________________________________________________________________________________
西神后来指出:注意到局部(切线法)
\[ \frac{1}{\sqrt{x^2+x+1}}\geq \frac{\sqrt{3}}{2}-\frac{x}{2\sqrt{3}}\]
就有
\[ LHS\geq \frac{\sqrt{3}}{2}(a+b+c)-\frac{ab+bc+ca}{2\sqrt{3}} \]